English
球王会官方网站
当前位置:首页 > 产品中心

球王会网页版:耗时2个月!把特斯拉Model 3彻底拆开没想到扒

来源:球王会官方网站 作者:球王会游戏官网网址

  7月18日消息,继上个月海通国际拆解了一台比亚迪“元”,用87页研报展示这款新能源汽车内部零部件

热线电话: 0574-62199599

产品视频

产品明细

  7月18日消息,继上个月海通国际拆解了一台比亚迪“元”,用87页研报展示这款新能源汽车内部零部件的详细细节后,近期券商“一哥”中信证券也联合多家企业和机构拆解了一台特斯拉Model 3,写了一份长达94页的研报

  据介绍,中信证券研究部TMT和汽车团队协同多家公司和机构耗时两个月才完成了对特斯拉Model 3标准续航版的完整拆解和分析,并形成了这份研报。

  不过,此前,海通国际从外观、操控、安全、性价比、续航情况等角度对2018款比亚迪元EV360智联炫酷进行评价,并呈现了这辆电动车的每一个部件,包括车身结构件、底盘、座椅、线束、多媒体系统、组合仪表、热管理系统、电池系统、电驱系统等等。甚至连隔音材料、地毯等每个拆下来的零部件都进行了图片文字描述,包括尺寸重量、工作原理、生产信息以及经销商报价等信息。

  而中信证券则通过拆解特斯拉Model 3标准续航版,对其域、线束和连接器、电池、电机电控、热管理、车身等多个方面进行了深入细致地分析。

  一个产业的进步和变革,往往是供给和需求两方面因素共同驱动的。当新航路带来的 新市场遇到珍妮纺纱机,就足够引发一场工业;出行的需求遇上热机,就产生了各类 交通工具。集成电路出现以来,人们对电子化、自动化、智能化的需求越来越高,其根源 还是对低成本美好生活的需求,这种需求与不断发展的 IT 技术供给相结合,相继诞生了 PC、智能手机、智能家居等诸多大型产业,如今又开始推动汽车往智能化方向演进。

  汽车的智能化的大方向已经成为了产业共识和市场共识,然而什么叫智能化却没有一 个明确的定义。我们认为,智能化的关键在于智能汽车的软件“可迭代、可演进”。比如 说 2008 年安卓 1.0 发布之初,使用体验是比较一般的,经过不断的数据收集、用户反馈 和持续迭代,最终交互和用户体验越来越好,逐步向我们理想中的“智能终端”逼近。

  无论每个人如何去定义自己心目中的汽车智能化,但我们相信会有一个共识,那就是 现在仅仅只是汽车智能化的起点,离终局还非常遥远,这中间软件需要不断进行升级迭代。而汽车过去的 E/E 架构(如下图所示),是由多个厂商提供 ECU 组成的电子电气架构,正 因为硬件和软件功能都被切割成很多块分布在不同厂家提供的 ECU 里,使得软件 OTA 的 难度非常大。这使得很多型号的汽车从出厂到最终报废,软件功能都没有升级过,都没有迭代,又何谈智能?

  显而易见,汽车如果要能像手机一样持续根据数据和用户反馈进行软件迭代,现有的 E/E 架构势必然是要进行大的变革的。软件和硬件必须解耦,算力必须从分布走向集中, 特斯拉的 Model3 率先由分布式架构转向了分域的集中式架构,这是其智能化水平遥遥领 先于许多车厂的主要原因,我们接下来就对特斯拉的车身域、座舱域、驾驶域进行详细的解读。

  车身域:按位置而非功能进行分区,彻底实现软件定义车身 同样是域,特斯拉的域思路始终是更为领先的。举例来说,作为传统汽 车供应链中最核心的供应商之一,博世是最早提出域概念的企业之一。但博世的思 路仍然受到传统的模块化电子架构影响,其在 2016 年提出了按照功能分区的五域架构, 将整车的 ECU 整合为驾驶辅助、安全、车辆运动、娱乐信息、车身电子 5 个域,不同域 之间通过域和网关进行连接。在当时看来,这一方案已经能够大大减少 ECU 数量, 然而用今天的眼光来看,每个域内部仍然需要较为复杂的线束连接,整车线束复杂度仍然较高。

  与博世形成对比,特斯拉 model 3 在 2016 年发布,2017 年量产上市,与博世的报告 几乎处于同一时期。然而,model 3 的域架构核心直接从功能变成了位置,3 个车 身就集中体现了特斯拉造车的新思路。按照特斯拉的思路,每个应该负责控 制其附近的元器件,而非整车中的所有同类元器件,这样才能最大化减少车身布线复杂度, 充分发挥当今芯片的通用性和高性能,降低汽车开发和制造成本。所以特斯拉的三个车身 域分别分布在前车身、左前门和右前门前,实现就近控制。这样的好处是可以降低 布线的复杂度,但是也要求三个车身域要实现彻底的软硬件解耦,对厂商的软件能力的要 求大大提高。

  以下分别介绍三个车身的情况,车身域分为前车身域、左车身域、右车身域, 其在 Model3 车身上的位置如下图所示:

  前车身域的位置在前舱,这个位置理论上来说遇到的碰撞概率要更高,因此采 用铝合金的保护外壳,而左右车身域由于在乘用舱内,遇到外界碰撞的概率较低, 保护外壳均采用塑料结构,如下图所示:

  前车身位于前舱中,主要负责的功能是前车体元件控制以及主要的配电工作。该离蓄电池比较近,方便取电。其主要负责三类电子电气的配电和控制:1、安全 相关:i-booster、ESP 车身稳定系统、EPS 助力转向、前向毫米波雷达;2、热管理相关:如冷却液泵、五通阀、换热器、冷媒温度压力传感器等;3、前车身功能:车头灯、 机油泵、雨刮等。除此之外,它还给左右车身供电,这一功能十分重要,因为左右 车身随后还将用这两个接口中的能量来驱动各自控制的车身零部件。

  将其拆开来看,具体功能实现方面,需要诸多芯片和电子元件来配合完成。核心的芯 片主要完成控制和配电两方面的工作。

  先说控制部分,主要由一颗意法半导体的 MCU 来执行(图中红框)。此外,由于涉及 到冷却液泵、制动液液压阀等各类电机控制,所以板上搭载有安森美的直流电机驱动芯片 (图中橙色框 M0、M1、M2),这类芯片通常搭配一定数量的大功率 MOSFET 即可驱动 电机。

  配电功能方面,一方面需要实时监测各部件中电流的大小,另一方面也需要根据监测 的结果对电流通断和电流大小进行控制。电流监测方面,AMS 的双 ADC 数据采集芯片和 电流传感器配套芯片(框 AMS 中的芯片)可以起到重要作用。而要控制电流的状态, 一方面是通过 MOSFET 的开关,另一方面也可以通过 HSD 芯片(High Side Driver,高 边开关),这种芯片可以控制从电源正极流出的电流通断。

  这一块电路板共使用了 52个安森美的大功率 MOSFET,9个功率整流器芯片, 以及 ST 和英飞凌的共计 21 个 HSD 芯片。在前车身上我们可以看到,特斯拉已经 在很大程度上用半导体元件取代了传统电气元件。

  左车身位于驾驶员小腿左前方位置,贴合车体纵向放置,采用塑料壳体封装, 可以在一定程度上节约成本。左车身负责管理驾驶舱及后部的左侧车身部件,充分 体现了尽可能节约线束长度以控制成本的指导思想。

  左车身主要负责了几类电子电气的配电和控制:1、左侧相关:包括仪表板、 方向盘位置调节、照脚灯;2、座椅和车门:,左前座椅、左后座椅、前门、后排车门、座 椅、尾灯等。

  左车身域控制的核心芯片主要也分为控制和配电。核心控制功能使用两颗 ST 的 32 位 MCU 以及一颗 TI 的 32 位单片机来实现。左车身的灯具和电机比较多,针对灯具类应 用,特斯拉选用了一批 HSD 芯片来进行控制,主要采用英飞凌的 BTS 系列芯片。针对电 机类应用,特斯拉则选用了 TI 的电机控制芯片和安森美的大功率 MOSFET。

  右车身与左车身基本对称,接口的布局大体相同,也有一些不同点。右车身域 负责雷达以及空调,同时右车身承担的尾部控制功能更多一些,包括后方的高位刹 车灯和后机油泵都在此控制。

  具体电路实现方面,由于功能较为相似,电路配置也与左车身较为相似。一个不同点 在于右车身信号较多,所以将主控单片机从左车身的 ST 换成了瑞萨的高端单片机 RH850 系列。此外由于右车身需要较多的空调控制功能,所以增加了三片英飞凌的半桥驱动器芯片。

  车身域是特斯拉相比传统汽车变化最大的地方,传统汽车采用了大量 ECU,而特斯拉 通过三个域实现了对整车的一个控制。虽然都是往域方向走,但特斯拉没有采用博 世的功能域做法,而是完全按区域来进行划分,将硬件尽量标准化,通过软件来定义汽车 的思路体现得淋漓尽致。除此之外,特斯拉还将一些电气化的部件尽量芯片化,如车身域 中采用了大量 HSD 芯片替代了继电器和保险丝,可靠性提高,而且可以编程,能更好实 现软件定义汽车。

  从特斯拉车身能够体现出的另一个发展趋势是器件的持续集成和持续降本。早 期版本的 model S 和 model X 并无如此集中的车身架。